Aluminum Precision Extrusion Design Parts

Aluminum Precision Extrusion Design Parts

Product Description and Process aluminum precision extrusion design parts Production process: cold extrusion process Machining process: CNC machine, machining center, lathe, mill machine, drill machine, etc. Surface treatment process: anodic oxidation, Dacromet coating, paint coating, powder...

Product Details

Product Description and Process

aluminum precision extrusion design parts

 

Production process: cold extrusion process

Machining process: CNC machine, machining center, lathe, mill machine, drill machine, etc.

Surface treatment process: anodic oxidation, Dacromet coating, paint coating, powder coating, etc.

 

Product Material and Uses

Normally produce with aluminum L1, L2, L3, L4, L5, Aluminum alloy LF21, LY11, LY12, LD10, Brass H62, H68, carbon steel Q195, Q215, Q235, Q255, 10, 15, 20, 25, 30, 35, 40, 45, low alloy steel 15Cr, 20Cr, 20MnB, 16Mn, 30CrMnTiA, 12CrNiTi, 35CrMnSi, stainless steel 1Cr13, 2Cr13, 1Cr18Ni9Ti, etc.


The extrusion products are widely used for auto-car parts, truck parts, train parts, vehicle components, aviation industry components, gear parts, spline parts, universal joint crossing shaft, other machinery components, etc.

 

Aluminum Extrusion Process

Extrusion Defined

Extrusion is defined as the process of shaping material, such as aluminum, by forcing it to flow through a shaped opening in a die. Extruded material emerges as an elongated piece with the same profile as the die opening. 

To aid in understanding the aluminum extrusion process think about a Play-Doh® Fun Factory and how it works. Think of the Fun Factory as the extrusion press, the handle as the ram, the shape bar as the die, and the Play-Doh® as the aluminum billet. The first step is to choose the desired shape and color. Think of the shape as the die and the color as the temper and alloy needed. Next, the Play-Doh® is inserted into the holding chamber and pressure is applied to the handle, which forces Play-Doh® through the shape. In an extrusion press, pressure is applied to the billet by the ram where the dummy block is attached to the end of the ram stem. When Play-Doh® begins to emerge, it has effectively been "extruded". The same principles apply to extrusions from aluminum billets but considerably more detailed and sophisticated technologies are involved.

Press size determines how large of an extrusion can be produced. Extrusion size is measured by its longest cross-sectional dimension, i.e. its fit within a circumscribing circle. A circumscribed circle is the smallest circle that will completely enclose the cross section of an extruded shape.

The most important factor to remember in the extrusion process is temperature. Temperature is most critical because it gives aluminum its desired characteristics such as hardness and finish.

 

Steps in the aluminum extrusion process

1. Billets must be heated to approximately 800-925° F.

2. After a billet reaches the desired temperature, it is transferred to the loader where a thin film of smut or lubricant is added to the billet and to the ram. The smut acts as a parting agent (lubricant) which keeps the two parts from sticking together.

3. The billet is transferred to the cradle.

4. The ram applies pressure to the dummy block which, in turn, pushes the billet until it is inside the container.

5. Under pressure the billet is crushed against the die, becoming shorter and wider until it has full contact with the container walls. While the aluminum is pushed through the die, liquid nitrogen flows around some sections of the die to cool it. This increases the life of the die and creates an inert atmosphere which keeps oxides from forming on the shape being extruded. In some cases nitrogen gas is used in place of liquid nitrogen. Nitrogen gas does not cool the die but does create an inert atmosphere.

6. As a result of the pressure added to the billet, the soft but solid metal begins to squeeze through the die opening.

7. As an extrusion exits the press, the temperature is taken with a True Temperature Technology (3T) instrument mounted on the press platen. The 3T records exit temperature of the aluminum extrusion. The main purpose of knowing the temperature is to maintain maximum press speeds. The target exit temperature for an extrusion is dependent upon the alloy. For example, the target exit temperature for the alloys 6063, 6463, 6063A, and 6101 is 930° F (minimum). The target exit temperature for the alloys 6005A, and 6061 is 950° F (minimum).

8. Extrusions are pushed out of the die to the leadout table and the puller, which guides metal down the run-out table during extrusion. While being pulled, the extrusion is cooled by a series of fans along the entire length of the run-out and cooling table. (Note: Alloy 6061 is water quenched as well as air quenched.)

9. Not all of the billet can be used. The remainder (butt) contains oxides from the billet skin. The butt is sheared off and discarded while another billet is loaded and welded to a previously loaded billet and the extrusion process continues.

10. When the extrusion reaches a desired length, the extrusion is cut with a profile saw or a shear.

11. Metal is transferred (via belt or walking beams systems) from the run-out table to the cooling table.

12. After the aluminum has cooled and moved along the cooling table, it is then moved to the stretcher. Stretching straightens the extrusions and performs 'work hardening' (molecular re-alignment which gives aluminum increased hardness and improved strength).

13. The next step is sawing. After extrusions have been stretched they are transferred to a saw table and cut to specific lengths. The cutting tolerance on saws is 1/8 inch or greater, depending on saw length.

 

After the parts have been cut, they are loaded on a transportation device and moved into age ovens. Heat-treating or artificial aging hardens the metal by speeding the aging process in a controlled temperature environment for a set amount of time.


Inquiry

Related Products